quarta-feira, 4 de agosto de 2010

Biologia - Respiração celular

Respiração celular

           As funções celulares (figura 1) dependem de um suprimento de energia que é derivado da quebra de moléculas orgânicas durante o processo de respiração celular. A energia liberada nesse processo é armazenada sob forma de moléculas de adenosina-trifosfato (ATP).


1a. etapa: os carboidratos e lipídeos, principalmente a glicose e os ácidos graxos, são as principais substâncias quebradas para a respiração celular. A glicose é quebrada no citosol em um processo chamado glicólise, onde se forma duas moléculas de ácido pirúvico, liberando uma certa quantidade de energia (quatro moléculas de ATP), produz duas moléculas de NADH2 e consumindo oxigênio.
C6H12O6      }     2 C3H4O3

                                                   (Glicose)       (Ácido pirúvico)

2a. etapa: o ácido pirúvico entra na mitocôndria, e é convertido em acetil-coenzima A por um sistema multienzimático da matriz mitocondrial chamado de piruvato desidrogenase, que então é metabolizada pelo ciclo do ácido cítrico (ciclo de krebs). Nesta etapa, uma quantidade de energia é liberada, tendo uma pequena parte utilizada para converter três NAD+ em três NADH.
           No ciclo de Krebs (Figura 2), a acetil CoA sofre uma série de modificações que acaba produzindo ácido oxaloacético, que então recomeça o ciclo. Essas reações liberam duas moléculas de CO2 e produzem três moléculas de NADH e uma molécula de FADH2.

3a. etapa: Depois os elétrons de alta energia percorrem a cadeia transportadora de elétrons ou cadeia respiratória, que é composto por complexos enzimáticos, onde os elétrons sedem energia e produz 36 mols de ATP por mol de glicose consumida. Este processo é chamado fosforilação oxidativa, e ocorre na membrana interna da mitocôdria.


FONTE: site http://www.ufmt.br/bionet/conteudos/01.01.05/respiracao.htm

terça-feira, 3 de agosto de 2010

Ácidos nucleicos

Ácidos Nucléicos

Conceitos Gerais


          São as moléculas com a função de armazenamento e expressão da informação genética
Existem basicamente 2 tipos de ácidos nucléicos:

• O Ácido Desoxirribonucléico - DNA

• O Ácido Ribonucléico - RNA

           Os ácidos nucléicos são macromoléculas formadas pela ligação tipo fosfodiéster entre 5 nucleotídeos diferentes, suas unidades fundamentais.

Os Nucleotídeos

       São as unidades fundamentais dos ácidos nucléicos
       Ligam-se uns aos outros através de ligações fosfodiéster, formando cadeias muito longas com milhões de resíduos de comprimento
       Além de participarem da estrutura dos ácidos nucléicos, os nucleotídeos atuam também como componentes na estrutura de coenzimas importantes no metabolismo oxidativo da célula, e como forma de energia química - ATP, por exemplo.
       Atuam ainda como ativadores e inibidores importantes em várias vias do metabolismo intermediário da célula

Estrutura dos Nucleotídeos

Os nucleotídeos são moléculas formadas por:

• Uma pentose

• Uma base nitrogenada

• Um ou mais radicais fosfato As Bases Nitrogenadas

Pertencem a 2 famílias e compostos, e são 5 no total:

• Bases Púricas, ou Purinas: Adenina e Guanina

• Bases Pirimídicas, ou Pirimidinas: Citosina, Timina Uracila

         Tanto o DNA como o RNA possuem as mesmas bases púricas, e a citosina como base pirimídica.
         A timina existe apenas no DNA, e no RNA, é substituída pela uracila - que possui um grupo metil a menos.
         Em alguns tipos de DNA virais e no RNA de transferência podem aparecer bases incomuns

As Pentoses

        A adição de uma pentose a uma base nitrogenada produz um nucleosídeo. Os nucleosídeos de A, C, G, T e U são denominados, respectivamente,

Adenosina, Citosina, Guanosina, Timidina e Uridina

        Se o açúcar em questão é a RIBOSE, temos um ribonucleosídeo, característico do RNA

        Se o açúcar é a desoxirribose - 1 hidroxila a menos em C2 - temos um desoxirribonucleosídeo, característico do DNA.

        A ligação com a base nitrogenada ocorre sempre através da hidroxila do carbono anomérico da pentose.

O Fosfato

        A adição de um ou mais radicais fosfato à pentose, através de ligação tipo éster com a hidroxila do carbono 5 da mesma, dá origem aos Nucleotídeos.
       Os grupos fosfato são responsáveis pelas cargas negativas dos nucleotídeos e dos ácidos nucléicos
       A adição do segundo ou terceiro grupo fosfato ocorre em seqüência, dando origem aos nucleotídeos di e trifosfatados

O DNA

        Está presente no núcleo das células eucarióticas, nas mitocôndrias e nos cloroplastos, e no citosol das células procarióticas
        Nas células germinativas e no ovo fertilizado, dirige todo o desenvolvimento do organismo, a partir da informação contida em sua estrutura
        É duplicado cada vez que a célula somática se divide

Estrutura do DNA

       O DNA é um polidesoxirribonucleotídeo formado por milhares de nucleotídeos ligados entre si através de ligações 3’, 5’-fosfodiéster
       Sua molécula é formada por uma fita dupla antiparalela, enrolada sobre si mesma formando uma dupla hélice

A Ligação Fosfodiéster

      Ocorre entre o fosfato do carbono 5 da pentose de um nucleotídeo e a hidroxila do carbono 3 da pentose do nucleotídeo seguinte

A cadeia resultante é bastante polar, e possui:

• Uma extremidade 5’ --> Fosfato de carbono 5 da pentose livre

• Uma extremidade 3’ --> Hidroxila de carbono 3 da pentose livre

       Por convenção, as bases de uma seqüência são sempre descritas da extremidade 5’ para a extremidade 3’

        As ligações fosfodiéster podem ser quebradas enzimaticamente por enzimas chamadas NUCLEASES, que se dividem em:

• Endonucleases --> Quebram ligações no meio da molécula;

• Exonucleases --> Quebram ligações nas extremidades da molécula

A Dupla Hélice

         Na dupla hélice do DNA, descrita pela primeira vez por Watson e Crick, as cadeias da molécula se dobram em torno de um eixo comum e de modo antiparalelo - a extremidade 5’ de uma cadeia é pareado com a extremidade 3’ da outra cadeia. No tipo mais comum de hélice - "B" - o esqueleto hidrofílico de fosfatos e pentoses fica na parte externa, enquanto que as bases hidrofóbicas, fixadas à este esqueleto, ficam no lado de dentro da estrutura. A estrutura lembra uma "escada em caracol"

Há um PAREAMENTO DE BASES entre as fitas da molécula do DNA. Assim, temos sempre pareadas:


• Adenina com Timina --> A-T

• Citosina com Guanina --> C-G

As bases se mantém pareadas por pontes de hidrogênio, 2 entre "A" e "T" e 3 entre "C" e "G".


As fitas do DNA podem ser separadas sob certas condições experimentais, sem rompimento das ligações fosfodiéster, e a dupla hélice pode ser desnaturada em um processo controlado e dependente de temperatura.

Existem 3 formas estruturais de DNA:

• A forma "B" --> descrita por Watson e Crick em 1953 e já citada acima, é a forma mais comum; a hélice é voltada para a direita e com 10 resíduos por volta, com planos de bases perpendiculares ao eixo helical

• A forma "A" --> Obtida pela desidratação moderada da forma "B", também é voltada para a direita, mas possui 11 resíduos por volta e as bases estão em um ângulo de 20 graus em relação ao eixo helical

• A forma "Z" --> A hélice nesta forma é voltada para a esquerda e contém cerca de 12 resíduos por volta

A transição entre as formas de DNA pode desempenhar um papel importante na regulação da expressão genética.

O RNA

         Atua como uma espécie de "cópia de trabalho", criada a partir do molde de DNA e utilizada na expressão da informação genética. A síntese de uma molécula de RNA a partir de um molde de DNA chama-se "TRANSCRIÇÃO"
         Nesta transcrição, modificações podem ocorrer sobre a molécula de RNA transcrita, convertendo-a de uma cópia fiel em uma cópia funcional do DNA.

Estrutura do RNA

           Em relação ao DNA, 4 diferenças são importantes: O RNA possui uracila no lugar da timina na seqüência de bases.

A pentose do RNA é a ribose

O RNA é formado por uma fita única, com eventual pareamento de bases intracadeia. A molécula do RNA é muito menor que a do DNA.

Existem 3 tipos de RNA, cada um com características estruturais e funcionais próprias:

RNA Ribossômico

Ou RNAr; É encontrado, em associação com várias proteínas diferentes, na estrutura dos ribossomos, as organelas responsáveis pela síntese protéica

Corresponde a até 80% do total de RNA da célula

RNA de Transferência

Ou RNA Transportador, ou ainda RNAt;

É a menor molécula dos 3 tipos de RNA; Está ligado de forma específica a cada um dos 20 aminoácidos encontrados nas proteínas

Corresponde a 15% do RNA total da célula

Fazem extenso pareamento de bases intracadeia, e atua no posicionamento dos aminoácidos na seqüência prevista pelo código genético, no momento da síntese protéica

RNA Mensageiro


Corresponde a apenas 5% do total de RNA da célula

Atua transportando a informação genética do núcleo da célula eucariótica ao citosol, onde ocorrerá a biossíntese protéica

É utilizado como molde nesta biossíntese.

sábado, 31 de julho de 2010

ORIGEM DA VIDA (PARTE II)

                                                Três ideias sobre a origem da vida

             Há três posições “filosóficas” em relação à origem da vida. A primeira relaciona-se aos mitos da “criação”, que afirmam que a vida foi criada por uma força suprema ou ser superior; essa hipótese, evidentemente, foge ao campo de ação do raciocínio científico, não podendo ser testada e nem refutada pelos métodos usados pela ciência.
            Uma segunda posição se refere à possibilidade de a vida ter se originado fora do planeta Terra e ter sido “semeada” por pedaços de rochas, como meteoritos, que teriam trazido “esporos” ou outras formas de vida alienígena. Esses teriam evoluído nas condições favoráveis da Terra, até originar a diversidade de seres vivos que conhecemos.
            Um dado interessante: chegam todos os anos, à superfície da Terra, ao redor de mil toneladas de meteoritos. Em algumas dessas rochas, foram encontradas substâncias orgânicas, como aminoácidos e bases nitrogenadas. Ficou bastante claro, a partir da década de 70, que a matéria orgânica é muito mais frequente no universo do que se acreditava antigamente. Um eminente astrônomo inglês, sir Fred Hoyle, defende a ideia de que material biológico, como vírus, poderia ter chegado do espaço; Hoyle chega a aceitar que isso aconteceria ainda hoje e que de alguma forma esse material “genético” novo poderia ser incorporado aos organismos existentes, modificando assim sua evolução!
              De qualquer forma, essas ideias não são seriamente consideradas pela maioria dos cientistas; para começo de conversa, o aquecimento de qualquer corpo que entrasse na atmosfera terrestre seria de tal ordem, que destruiria qualquer forma de vida semelhante às que conhecemos hoje. Por outro lado, aceitar que a vida apareceu “fora” da Terra somente “empurraria” o problema para diante, já que não esclareceria como a vida teria surgido fora daqui.
              A terceira posição, a mais em voga hoje, aceita que a vida pode ter surgido espontaneamente sobre o planeta Terra, através da evolução química de substâncias não vivas. Não é fácil ou seguro verificar eventos que ocorreram há bilhões de anos, quando nosso planeta era muito diferente do que é hoje; no entanto, os cientistas conseguiram reproduzir algumas das condições originais em laboratório e descobriram muitas evidências geológicas, químicas e biológicas que reforçam essa hipótese. Essa terceira posição foi defendida pela primeira vez pelo cientista russo Oparin, em 1936, como veremos nos itens a seguir.
              Algumas pistas sobre o problemaNos últimos 120 anos, várias ideias sobre a origem da Terra, sua idade, as condições primitivas da atmosfera foram surgindo. Em particular, verificou-se que os mesmos elementos que predominam nos organismos vivos (carbono, hidrogênio, oxigênio e nitrogênio) também existem fora deles; nos organismos vivos estes elementos estão combinados de maneira a formar moléculas complexas, como proteínas, polissacarídeos, lipídios e ácidos nucleicos. A diferença básica, então, entre matéria viva e matéria bruta estaria sobretudo ao nível da organização desses elementos. O químico Wöhler, em 1828, já havia fornecido a seguinte pista: substâncias “orgânicas” ou complexas, como a ureia, podem ser formadas em condições de laboratório a partir de substâncias simples, “inorgânicas”. Se as condições adequadas surgiram da Terra, no passado, então a vida poderia ter aparecido do inorgânico.
              Uma simples análise das características que os seres vivos exibem hoje mostra, independentemente de sua forma ou tamanho, a presença dos mesmos “tijolos” básicos em todos eles: açúcares simples, os 20 tipos de aminoácidos, os 4 nucleotídeos de DNA e os 4 de RNA, e os lipídios. Ora, depois da pista dada por Wöhler, a que nos referimos, os químicos descobriram que esses compostos podem ser feitos em laboratório, se houver uma fonte de carbono, de nitrogênio, e uma certa quantidade de energia disponível. Assim sendo, se as condições adequadas tivessem estado presentes, no passado da Terra, essas substâncias poderiam ter se formado sem grandes dificuldades.
                Várias dessas ideias foram organizadas e apresentadas de forma clara e coerente pelo bioquímico russo Aleksandr I. Oparin, em 1936, no seu livro “A origem da vida”. Repare que, na época, ainda não se sabia que os ácidos nucleicos constituem o material genético dos seres vivos. Vamos enumerar os pontos fundamentais das ideias que Oparin apresenta.

As ideias de Oparin

1.A idade aproximada da Terra é de 4,5 bilhões de anos, tendo a crosta se solidificado há uns 2,5 bilhões de anos.

2.A composição da atmosfera primitiva foi provavelmente diferente da atual; não havia nela O2 ou N2; existia amônia (NH3), metano (CH4), vapor de água (H2O) e hidrogênio (H2).

3.O vapor de água se condensou à medida que a temperatura da crosta diminuiu. Caíram chuvas sobre as rochas quentes, o que provou nova evaporação, nova condensação e assim por diante. Portanto, um ativo ciclo de chuvas.

4.Radiações ultravioleta e descargas elétricas das tempestades agiram sobre as moléculas da atmosfera primitiva: algumas ligações químicas foram desfeitas, outras surgiram; apareceram assim novos compostos na atmosfera, alguns dos quais orgânicos, como os aminoácidos, por exemplo.

5.Aminoácidos e outros compostos foram arrastados pela água até a crosta ainda quente. Compostos orgânicos combinaram-se entre si, formando moléculas maiores, como os “proteinoides” (ou substâncias similares a proteínas).

6.Quando a temperatura das rochas tornou-se inferior a 100oC, já foi possível a existência de água líquida na superfície do globo: os mares estavam se formando. As moléculas orgânicas foram arrastadas para os mares. Na água, as probabilidades de encontro e choques entre moléculas aumentaram muito; formaram-se agregados moleculares maiores, os coacervados.

7.Os coacervados ainda não são seres vivos; no entanto eles continuam se chocando e reagindo durante um tempo extremamente longo; algum coacervado pôde casualmente atingir a complexidade necessária (lembre-se de que a diferença entre vida e não vida é mera questão de organização). Daí em diante, se tal coacervado teve a propriedade de duplicar-se, pode-se admitir que surgiu a vida, mesmo que sob uma forma extremamente primitiva.

A comprovação experimental

            O bioquímico Miller tentou reproduzir em laboratório algumas das condições previstas por Oparin. Construiu um aparelho, que era um sistema fechado, no qual fez circular durante 7 dias uma mistura de gases: metano, hidrogênio, amônia e vapor de água estavam presentes. Um reservatório de água aquecido à temperatura de ebulição permitia a formação de mais vapor de água, que circulava arrastando os outros gases.


             Num certo lugar do aparelho, a mistura era submetida a descargas elétricas constantes, simulando os “raios” das tempestades que se acredita terem existido na época. Um pouco adiante, a mistura era esfriada e, ocorrendo condensação, tornava-se novamente líquida. Ao fim da semana, a água do reservatório, analisada pelo método da cromatografia, mostrou a presença de muitas moléculas orgânicas, entre as quais alguns aminoácidos.
             Miller, com esta experiência, não provava que aminoácidos realmente se formaram na atmosfera primitiva; apenas demonstrava que, caso as condições de Oparin tivessem se verificado, a síntese de aminoácidos teria sido perfeitamente possível.
             Fox, em 1957, realiza a seguinte experiência: aquece uma mistura seca de aminoácidos e verifica que entre muitos deles acontecem ligações peptídicas, formando-se moléculas semelhantes a proteínas (lembre-se de que na ligação peptídica ocorre perda de água ou desidratação). Os resultados de Fox reforçam a seguinte ideia: se, de fato, aminoácidos caíram sobre as rochas quentes, trazidos pela água da chuva, eles poderiam ter sofrido combinações formando moléculas maiores, os proteinoides, que acabariam sendo carregadas aos mares em formação. Percebe-se que Fox tenta testar parte das ideias de Oparin, e seu ponto de partida foi, sem dúvida, a experiência de Miller.
          A química dos coloides explica e prevê a reunião de grandes moléculas em certas condições, formando os agregados que chamamos coacervados.
           É evidente, porém, que a última etapa da hipótese de Oparin nunca poderá ser testada em laboratório; em outros termos, para conseguirmos que um entre trilhões de coacervados se transformasse, por acaso, em um ser vivo muito simples, teríamos de dispor de um laboratório tão grande quanto os mares primitivos, que contivesse, portanto, um número infinitamente grande de coacervados; além disso, teríamos de dispor de um tempo infinitamente grande, que possibilitasse inúmeras colisões e reações químicas que foram necessárias para se obter pelo menos um sucesso.
          Será que, devido à impossibilidade de teste experimental, devemos repelir “a priori” esta fase? Podemos pelo menos pensar nela em termos estatísticos. Vamos dar a palavra a um célebre biólogo, George Wald, que examinou minuciosamente o assunto.

A sucuri com duas cabeças

               Quando o zoólogo paraense Nelson de Albuquerque, de 35 anos, foi dar aulas na Universidade Federal de Mato Grosso do Sul (UFMS), em Corumbá, no início de 2009, ele logo se deparou com uma serpente de duas cabeças. Era uma fêmea de 54 cm de sucuri-amarela (Eunectes notaeus). Albuquerque descobriu que ela fora capturada em 1985, no Rio Uruguai. Passados 25 anos desde a captura, a cobra merecia ser estudada.
               Além das duas cabeças, a cobra tem um par de corações, um par de fígados, dois estômagos e três pulmões. A descrição foi publicada na semana passada no Journal of Natural History. A primeira referência à cobras bicéfalas é do filósofo grego Aristóteles, 350 a.C. No Brasil, este é o 28º caso.

“A sucuri tinha 1 mês de vida ao ser sacrificada. Na natureza, esses animais sobrevivem pouco. Mas uma cobra bicéfala viveu 22 anos num zoológico americano”, disse Albuquerque. “Uma cabeça é sempre a dominante. Há casos de briga entre as duas cabeças.”



quarta-feira, 28 de julho de 2010

ORIGEM DA VIDA (PARTE I)

A Idéia da Geração Espontânea




Lixo gera moscas?
               Uma idéia bastante antiga, dos tempos de Aristóteles, é a de que seres vivos podem surgir por geração espontânea. Apesar de se conhecer o papel da reprodução, admitia-se que certos organismos vivos pudessem surgir espontaneamente da matéria bruta. Observações do cotidiano mostravam, por exemplo, que larvas de moscas apareciam no meio do lixo e que poças de lama podiam exibir pequenos animais. A conclusão a que se chegava era a de que o lixo e a lama haviam gerado diretamente os organismos.
               Reconhecia-se, no entanto, que nem toda meteria bruta podia gerar vida. Assim, de um pedaço de ferro ou de pedra não surgia vida; mas um pedaço de carne, uma porção de lama ou uma poça d'água eram capazes de gerar vida. Explicava-se esta diferença entre diversos materiais brutos alegando-se a necessidade de um “princípio ativo” que não estaria presente em qualquer matéria bruta, mas cuja presença seria necessária para haver geração espontânea. O princípio ativo não era considerado algo concreto, mas uma capacidade ou potencialidade de gerar vida.
               As idéias sobre geração espontânea perduraram por um tempo muito longo, apesar de sua forma original ter evoluído aos poucos; ainda nos meados do século passado, havia numerosos partidários dessa teoria, definitivamente destruída pelos trabalhos de Pasteur.
              Para um partidário da geração espontânea, explicar a origem da vida não apresentava nenhuma dificuldade; de fato, se aceitarmos que a vida surge normalmente da matéria bruta, não será difícil acreditar que o primeiro ser vivo também tenha se originado pelo mesmo processo.

Redi, Needham e Spallanzani
              Uma experiência realizada por Francesco Redi, em meados do século XVII, representa a primeira tentativa séria de derrubar-se a noção de geração espontânea. Redi coloca pedaços de carne em dois grupos de frascos; um dos grupos permanece aberto, enquanto o outro é recoberto por um pedaço de gaze. Sobre a carne dos frascos abertos, após alguns dias, surgem larvas de moscas; nos frascos cobertos não aparecem larvas. Redi concluiu que a carne não gera as larvas; moscas adultas devem ter sido atraídas pelo cheiro de material em decomposição e desovaram sobre a carne. As larvas nasceram, portanto, dos ovos postos pelas moscas. Essa idéia é ainda reforçada pela observação dos frascos cobertos: sobre a gaze, do lado externo do frasco, algumas larvas apareceram. À idéia de que os seres vivos se originam sempre de seres vivos chamamos biogênese, sendo abiogênese sinônimo de geração espontânea.
              Apesar da repercussão das experiências de Redi, a idéia de geração espontânea ainda não havia morrido. Ironicamente, foram o uso crescente do microscópio e a descoberta dos microorganismos os fatores que reforçaram a teoria da abiogênese: tais seres pequeninos, argumentava-se, eram tão simples, que não era concebível terem a capacidade de reprodução; como conclusão óbvia, só podiam ser formados por geração espontânea.
              Um religioso chamado John Needham fez em 1745 um experimento cujos resultados pareciam comprovar as idéias da abiogênese. Vários caldos nutritivos, como sucos de frutas e extrato de galinha, foram colocados em tubos de ensaio, aquecidos durante um certo tempo e em seguida selados. A intenção de Needham, ao aquecer, ora obviamente a de provocar a morte de organismos possivelmente existentes nos caldos; o fechamento dos frascos destinava-se a impedir a contaminação por micróbios externos. Apesar disso, os tubos de ensaio, passados alguns dias, estavam turvos e cheios de microorganismos, o que parecia demonstrar a verdade da geração espontânea.
              Cerca de 25 anos depois, o italiano Lazaro Spallanzani repetiu as experiências de Needham. A diferença no seu procedimento foi a de ferver os líquidos durante uma hora, não se limitando a aquecê-los; em seguida os tubos foram fechados hermeticamente. Líquidos assim tratados mantiveram-se estéreis, isto é, sem vida, indefinidamente. Desta forma, Spallanzani demonstrava que os resultados de Needham não comprovavam a geração espontânea: pelo fato de aquecer por pouco tempo, Needham não havia destruído todos os micróbios existentes, dando-lhes a oportunidade de proliferar novamente.Needham, porém, responde às críticas de Spallanzani com argumentos aparentemente muito fortes:

“...Spallanzani... selou hermeticamente dezenove frascos que continham diversas substâncias vegetais e ferveu-os, fechados, por uma hora. Mas, pelo método de tratamento pelo qual ele torturou suas dezenove infusões vegetais, fica claro que enfraqueceu muito ou até destruiu a força vegetativa das substâncias em infusão...”
       
              Repare no termo “força vegetativa”, que era usado como sinônimo de princípio ativo. O aquecimento excessivo, segundo Needham, havia destruído o princípio ativo; sem princípio ativo, nada de geração espontânea! É interessante notar que o próprio Spallanzani não soube refutar esses argumentos, ficando as idéias da abiogênese consolidadas.


Os trabalhos de Pasteur
                O cientista francês Louis Pasteur conseguiu, por volta de 1860, mostrar definitivamente a falsidade das idéias sobre geração espontânea da vida. Seus experimentos foram bem semelhantes aos de Spallanzani, porém com alguns aperfeiçoamentos. Vejamos como Pasteur descreve suas experiências.

“Coloquei em frascos de vidro os seguintes líquidos, todos facilmente alteráveis, em contato com o ar comum: suspensão de lêvedo de cerveja em água, suspensão de lêvedo de cerveja em água e açúcar, urina, suco de beterraba, água de pimenta. Aqueci e puxei o gargalo do frasco de maneira a dar-lhe curvatura; deixei o líquido ferver durante vários minutos até que os vapores saíssem livremente pela estreita abertura superior do gargalo, sem tomar nenhuma outra precaução. Em seguida, deixei o frasco esfriar. É uma coisa notável, capaz de assombrar qualquer pessoa acostumada com a delicadeza das experiências relacionadas à assim chamada geração espontânea, o fato de o líquido em tal frasco permanecer imutável indefinidamente... Parecia que o ar comum, entrando com força durante os primeiros momentos (do resfriamento), deveria penetrar no frasco num estado de completa impureza. Isto é verdade, mas ele encontra um líquido numa temperatura ainda próxima do ponto de ebulição.
A entrada do ar ocorre, então, mais vagarosamente e, quando o líquido se resfriou suficientemente, a ponto de não mais ser capaz de tirar a vitalidade dos germes, a entrada do ar será suficientemente lenta, de maneira a deixar nas curvas úmidas do pescoço toda a poeira (e germes) capaz de agir nas infusões...
Depois de um ou vários meses no incubador, o pescoço do frasco foi removido por golpe dado de tal modo que nada, a não ser as ferramentas, o tocasse, e depois de 24, 36 ou 48 horas, bolores se tornavam visíveis, exatamente como no frasco aberto ou como se o frasco tivesse sido inoculado com poeira do ar.”

                   Com esta experiência engenhosa, Pasteur também demonstrava que o líquido não havia perdido pela fervura suas propriedades de abrigar vida, como argumentaram alguns de seus opositores. Além disso, não se podia alegar a ausência do ar, uma vez que este entrava e saía livremente (apenas estava sendo filtrado).


                                                                                                  (continua...)